properties of conductors and insulators pdf

Properties of conductors and insulators pdf

File Name: properties of conductors and insulators .zip
Size: 2076Kb
Published: 20.04.2021

Conductors vs. Insulators


- Circuits and Resistors

Conductors vs. Insulators

Conductors are generally substances which have the property to pass different types of energy. In the following, the conductivity of electricity is the value of interest. The conductivity of metals is based on the free electrons so-called Fermi gas due to the metal bonding. Already with low energy electrons become sufficiently detached from the atoms and a conductivity is achieved.

The conductivity depends, inter alia, on the temperature. If the temperature rises, the metal atoms swing ever stronger, so that the electrons are constrained in their movements.

Consequence, the resistance increases. The best conductors, gold and silver, are used relatively rare because of the high costs gold e.

The alternatives in the semiconductor technology for the wiring of the individual components of microchips are aluminum and copper. In addition to metals, salts can also conduct electricity.

There are no free electrons, so the conductivity depends on ions which can be solved when a salt is melting or dissolving, so that the ions are free to move see chapter chemical bonds for details.

The atomic bond is based on shared electron pairs of nonmetals. The elements which behave like nonmetals have the desire to catch electrons, thus there are no free electrons which might serve as charge carriers. In the solid state, ions are arranged in a grid network. By electrical forces, the particles are held together. There are no free charge carriers to enable a current flow. Thus substances composed of ions can be both conductor and insulator.

Semiconductors are solids whose conductivity lies between the conductivity of conductors and insulators. Due to exchange of electrons - to achieve the noble gas configuration - semiconductors arrange as lattice structure. Unlike metals, the conductivity increases with increasing temperature. Increasing temperatures leads to broken bonds and free electrons are generated. At the location at which the electron was placed, a so-called defect electron "hole" remains.

The electron flow is based on the conductivity properties of semiconductors. The electronic band structure illustrates why semiconductors behave like this. The electronic band structure is an energy schema to describe the conductivity of conductors, insulators, and semiconductors. The schema consists of two energy bands valence and conduction band and the band gap. The valence electrons - which serve as charge carriers - are located in the valence band, in the ground state the conduction band is occupied with no electrons.

Between the two energy bands there is the band gap, its width affects the conductivity of materials. If we consider a single atom, there are according to the Bohr model of atoms sharply distinct energy levels, which may be occupied by electrons.

If there are multiple atoms side by side they are interdependent, the discrete energy levels are fanned out. In a silicon crystal, there are approximately 10 23 atoms per cubic centimeter, so that the individual energy levels are no longer distinguishable from each other and thus form broad energy ranges. The width of the energy bands depends on how strongly the electrons are bound to the atom.

The valence electrons in the highest energy level interact strongly with those of neighboring atoms and can be solved relatively easily from an atom; with a very large number of atoms, a single electron can no longer be assigned to one single atom.

As a result, the energy bands of the individual atoms merge to a continuous band, the valence band. In conductors, the valence band is either not fully occupied with electrons, or the filled valence band overlaps with the empty conduction band. In general, both states occure at the same time, the electrons can therefore move inside the partially filled valence band or inside the two overlapping bands. In conductors there is no band gap between the valence band and conduction band.

In insulators the valence band is fully occupied with electrons due to the covalent bonds. The electrons can not move because they're "locked up" between the atoms. To achieve a conductivity, electrons from the valence band have to move into the conduction band.

This prevents the band gap, which lies in-between the valence band and conduction band. Only with considerable energy expenditure if at all possible the band gap can be overcome; thus leading to a negligible conductivity. Even in semiconductors, there is a band gap, but compared to insulators it is so small that even at room temperature electrons from the valence band can be lifted into the conduction band.

The electrons can move freely and act as charge carriers. In addition, each electron also leaves a hole in the valence band behind, which can be filled by other electrons in the valence band. Thus one gets wandering holes in the valence band, which can be viewed as positive charge carriers.

There are always pairs of electrons and holes, so that there are as many negative as positive charges, the semiconductor crystal as a whole is neutral.

A pure undoped semiconductor is known as intrinsic semiconductor. Per cubic centimeter there are about 10 10 free electrons and holes at room temperature. Since the electrons always assume the energetically lowest state, they fall back into the valence band and recombine with the holes if there is no energy supply. At a certain temperature an equilibrium is arranged between the electrons elevated to the conduction band and the electrons falling back.

With increasing temperature the number of electrons that can leap the band gap is increased, and thus increasing the conductivity of semiconductors. Since the width of the band gap represents a certain energy corresponding to a particular wavelength, one tries to alter the width selective in order to obtain certain colors of light emitting diodes LED.

This may be achieved by combining different materials. Gallium arsenide GaAs has a band gap of 1. The intrinsic conductivity of silicon is of no interest for the functioning of components, since it depends, inter alia, on the supplied energy. Which means that it changes with the temperature; in addition a conductivity comparable to metals is only possible at very high temperatures several hundred degrees Celsius.

In order to deliberately influence the conductivity of semiconductors, impurity atoms can be introduced into the regular silicon lattice to alter the number of free electrons and holes. Metals The conductivity of metals is based on the free electrons so-called Fermi gas due to the metal bonding.

Metallic bonding: fixed ions and free valence electrons Fermi gas. Cut-out of a silicon lattice.


The conductor and insulator are the types of material. One of the major difference between the conductor and insulator is that the conductor allows the energy i. Some other differences between them are explained below in the form of the comparison chart. Basis For Comparison Conductor Insulator Definition Material which permits the electric current or heat to pass through it. Restrict the electric current or heat to pass through it. Electric Field Exist on the surface but remain zero inside the conductor.

This website uses JavaScript. If you do not have JavaScript enabled in your browser, this website may not function or appear properly. Please enable JavaScript in your browser settings when using this website. Hitachi Group Corporate Information. Semiconductors possess specific electrical properties. A substance that conducts electricity is called a conductor, and a substance that does not conduct electricity is called an insulator.

An insulator is a material which is a poor conductor of electricity or heat. Some common insulators include wood, plastic, glass, porcelain and Styrofoam; Styrofoam and plastic see wide use in household applications. Floors, roofs and basements often get urethane foam insulation, as it reduces heating costs by retaining heat in homes. A number of properties limit an insulator's ability to conduct heat and electricity. Insulators are poor conductors of heat and electricity, due to tight binding of electrons in their atoms and molecules.

- Circuits and Resistors

A conductor is a material which contains movable electric charges. In metallic conductors such as copper or aluminum, the movable charged particles are electrons. Positive charges may also be mobile, such as the cationic electrolyte s of a battery or the mobile protons of the proton conductor of a fuel cell. Insulators are non-conducting materials with few mobile charges; they carry only insignificant electric currents. In describing conductors using the concept of band theory, it is best to focus on conductors that conduct electricity using mobile electrons.

In the last article, we have studied the dielectric properties of solids. In this article, we shall study the electrical properties of solids. Electrical Conductivity:. The electrical conductivity may be due to the motion of ions.

Register Now. Hey there! We receieved your request. Introduction to Conductors and Insulators. Applications of Conductors.


  • Scott M. 28.04.2021 at 06:14

    insulators. Demonstrate that electricity will only flow through conductors and not additional voltage will not change the conducting or insulating property of the.


Leave a reply